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Abstract

Accurate measurements of cellular protein concentrations are
invaluable to quantitative studies of gene expression and physi-
ology in living cells. Here, we developed a versatile mass spec-
trometric workflow based on data-independent acquisition
proteomics (DIA/SWATH) together with a novel protein inference
algorithm (xTop). We used this workflow to accurately quantify
absolute protein abundances in Escherichia coli for > 2,000
proteins over > 60 growth conditions, including nutrient limita-
tions, non-metabolic stresses, and non-planktonic states. The
resulting high-quality dataset of protein mass fractions allowed
us to characterize proteome responses from a coarse (groups of
related proteins) to a fine (individual) protein level. Hereby, a
plethora of novel biological findings could be elucidated, includ-
ing the generic upregulation of low-abundant proteins under
various metabolic limitations, the non-specificity of catabolic
enzymes upregulated under carbon limitation, the lack of large-
scale proteome reallocation under stress compared to nutrient
limitations, as well as surprising strain-dependent effects
important for biofilm formation. These results present valuable
resources for the systems biology community and can be used
for future multi-omics studies of gene regulation and metabolic
control in E. coli.
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Introduction

Proteins are one of the key molecular players in living cells, directly
affecting cell behavior through myriads of activities. They are
controlled, regulated, and fine-tuned in time and space through vari-
ous mechanisms, including protein synthesis, turnover, post-
translational modifications, and protein—protein interactions. In
comparison to DNA or RNA, proteins represent a more direct read-
out of cellular functions and phenotypes, since proteins are the
biomolecules catalyzing most biochemical reactions. Therefore,
quantitative measurements of proteins, their turnover rates, their
modification, or their interaction status provide direct snapshots of
cellular processes, allowing to associate gene expression to physiol-
ogy and phenotypes. Over the last decades, liquid-chromatography
coupled to tandem mass spectrometry (LC-MS/MS) has matured to
be the method of choice for generating quantitative proteomic data
(Aebersold & Mann, 2003, 2016). A specific challenge for systems-
level studies is the reliable quantification of thousands of proteins,
including proteins at low concentrations, across large sample
cohorts from a variety of different growth conditions, phenotypes,
or strains (Rost et al, 2015). Both relative protein quantification (al-
lowing cross-sample comparisons for the same protein) and abso-
lute protein quantification (allowing cross-protein comparisons in
the same sample) provide crucial information on the activity of
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biochemical and regulation pathways, the stoichiometry of protein
complexes, and the relationship between gene expression and cellu-
lar phenotype (Ludwig & Aebersold, 2014; Schubert et al, 2015;
Schmidt et al, 2016). Furthermore, accurate measurements of abso-
lute protein abundances (e.g., “number of proteins per cell” or
“protein mass fractions”), together with the knowledge of cell
volume, give the cellular protein concentrations (Appendix Note
S1). This can be combined with other omics data to yield detailed
biochemical information. For example, translational efficiencies of
mRNA can be obtained if data on absolute mRNA concentrations
are available (Li et al, 2014), or enzymatic parameters can be inves-
tigated if concentrations of metabolites associated with an enzyme
and the flux it carries are known (Schubert et al, 2015).

The Gram-negative bacterium Escherichia coli is one of the best-
characterized model organism, and a workhorse for microbial genet-
ics, biotechnology, and systems biology, thanks to many decades of
rigorous molecular and physiological studies (Lee, 1996; Neidhardt,
1996; Bremer & Dennis, 2008; Karp et al, 2018). In the past decade,
substantial advancements have been made in the quantitative char-
acterization of the proteome of E. coli, driven in part by elucidating
the cost of protein synthesis and the allocation of proteomic
resources in different growth conditions (Basan et al, 2015a; Hui et
al, 2015; Peebo et al, 2015; Caglar et al, 2017; Erickson et al, 2017).
Most of these proteomic studies focused on the absolute abundances
of groups of proteins, e.g., the abundances of all enzymes involved
in glycolysis or in amino acid synthesis. Quantitative data on protein
abundances collected at this coarse-grained level across a spectrum
of relevant growth conditions showed that the cost of protein
synthesis is key to explain a number of ubiquitous microbial
phenomena, e.g., catabolite repression (You et al, 2013; Hui et al,
2015), metabolic overflow (Basan et al, 2015a; Peebo et al, 2015),
and diauxic shift (Erickson et al, 2017). While the accuracy of quan-
titative proteomics at that time was not sufficient for making quanti-
tative statements on the abundances of individual proteins,
abundance estimates based on ribosome profiling were able to
generate insightful quantitative information at the individual protein
level, e.g., in quantitatively assessing the fitness effect of the expres-
sion of a single metabolic protein and on the stoichiometric relation
between enzymes in protein complexes (Li et al, 2014). However,
the elaborate workflow and high costs of ribosome profiling make
this demanding method difficult to apply to a large number of
growth conditions.

A large step in the direction of comprehensive quantitation of E.
coli proteomes was made by Schmidt et al (2016), who calibrated
mass spectrometric protein intensities using quantified external
standards (AQUA peptides) for a subset of 41 proteins expressed at
different abundances. This study investigated proteome allocation,
expression regulation, and post-translational adaptations of E. coli
across a set of 22 different growth conditions. However, despite the
improvement in quantitation, their major findings either only
considered the total abundance of groups of proteins or were not
quantitative in nature. A detailed analysis presented in this work
showed that in fact the accuracy of absolute abundance quantitation
using AQUA peptide calibration is limited. One key challenge for
accurate quantitation of absolute protein abundances in bottom-up
proteomics is that peptides, rather than proteins, are the measured
analytes. Therefore, absolute protein abundance needs to be
inferred from peptide abundances, which is not straightforward—
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different peptide precursors from the same protein can yield very
different intensities. Even when external standards, such as AQUA
peptides, are used, they provide only information on proteins from
which the peptides are derived from. Additionally, accurate absolute
quantification with AQUA peptides is very expensive, work inten-
sive, technically challenging, and can still be error-prone (Ludwig &
Aebersold, 2014).

In this study, we described a versatile workflow that accurately
quantifies absolute abundances of thousands of E. coli proteins at
the individual protein level over many conditions. We demonstrated
the usefulness of the generated datasets by providing extensive
biological analyses of numerous individual proteins, which is some-
thing that has not been done previously in proteomic studies of
E. coli. Additional utility at the individual protein level will be
shown in follow-up studies, where we will combine the data gener-
ated here with other omics approaches. Compared to previous stud-
ies, our approach provides high-throughput quantification that is
comprehensive, accurate, and reproducible, and delivers at low
costs and a reasonably fast timescale (1 h per sample). Our pipeline
is based on data-independent acquisition mass spectrometry (DIA/
SWATH (Gillet et al, 2012; Chapman et al, 2014; Ludwig et al,
2018)) for which we generated a tailor-made comprehensive E. coli
spectral library entailing information for 64% of all annotated
E. coli proteins. DIA/SWATH mass spectrometry applied to study
E. coli proteomes has recently been shown to provide excellent
quantitative results in terms of precision, reproducibility, and deep
proteome coverage (Midha et al, 2020).

Further, we established a novel peptide-to-protein inference algo-
rithm, named xTop, which combines intensities from unique
peptides of a given protein across all samples at hand to infer the
intensities of that protein. We showed that xTop is superior in esti-
mating relative protein abundances across samples, compared to
other commonly used algorithms, such as iBAQ (Schwanhausser et
al, 2011) or TopPepN (Silva et al, 2006; Ludwig et al, 2012; Rosen-
berger et al, 2014). We benchmarked these protein inference meth-
ods, along with ribosome profiling, for their estimate of absolute
protein abundances against a set of spiked-in reference peptides
(AQUA), as well as by using a number of internal references offered
by protein complexes with known stoichiometry. We established
that absolute protein abundances inferred from ribosome profiling
data are superior in accuracy. We therefore calibrated the relative
protein abundances provided by proteomics and xTop to the abso-
lute abundance obtained from ribosome profiling, hence obtaining
accurate protein abundances across a vast number of samples.

Finally, we applied our workflow to explore the E. coli proteome
across ~ 60 growth conditions. Here we extended well beyond nutri-
ent limitation (carbon, phosphate, oxygen) and included anaerobic
growth, various non-metabolic stresses (high temperature, hyperos-
molarity, acetate, ethanol, oxidative), and conditions favoring non-
planktonic growth, such as biofilm and colony growth. A total of
2,335 proteins were detected from 66 samples across these condi-
tions. This comprehensive dataset allowed us to characterize
proteome responses at the global level and, crucially, for individual
proteins at unprecedented detail. At the level of protein sectors
(groups of proteins exhibiting similar response patterns under meta-
bolic limitations or antibiotic inhibition), the responses by abundant
proteins were found to match what was previously seen for sector
aggregates (Peebo et al, 2015; Schmidt et al, 2016; Caglar et al,
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2017). However, a large number of newly detected, low-abundant
proteins exhibited distinct responses unresolved in previous studies.
A more detailed examination of individual proteins in nutrient limi-
tation, stress conditions, and for various commonly used media and
genotypes revealed several surprises, including the commonality of
the response to growth on different carbon sources, the impact of
micronutrients in growth medium, the lack of proteome-wide
response to non-metabolic stresses, and factors affecting motility
and biofilm formation. These findings shed new light on physiologi-
cal responses of E. coli to environmental and genetic perturbations,
and generate a variety of interesting hypotheses to be further exam-
ined by follow-up studies.

Results
Workflow development

We developed a versatile workflow for relative and absolute quan-
tification of E. coli proteomes across many samples using DIA/
SWATH mass spectrometry. For the peptide-centric analysis of DIA/
SWATH data, a “spectral library” encapsulating prior knowledge
about chromatographic and mass spectrometric behavior of peptides
is required. We generated a comprehensive E. coli spectral library
from a diverse set of E. coli proteomes. Further, we developed a
novel protein inference algorithm, termed xTop, and tested its
performance in comparison to other commonly used inference algo-
rithms, such as iBAQ (Schwanhausser et al, 2011) and TopPepN
(Silva et al, 2006; Ludwig et al, 2012; Rosenberger et al, 2014).

Molecular Systems Biology

Spectral library generation

To generate a comprehensive E. coli spectral library for peptide-
centric DIA/SWATH data analysis, we followed the workflow illus-
trated in Fig 1A. To detect as many peptides and proteins as possi-
ble, including those proteins that are expressed only under specific
growth conditions, we grew E. coli cells in 34 diverse growth condi-
tions, including exponential, stationary, and biofilm-forming condi-
tions, exposure to a spectrum of stresses (high and low pH,
hyperosmolarity, high temperature, oxidative stress), as well as a
wide range of nutrient sources (Datasets EV1 and EV2). All 34
samples were measured by DDA-based mass spectrometry on a
quadrupole-time-of-flight mass spectrometer (TripleTOF 5600,
Sciex). To further increase proteome coverage, a pooled sample was
fractionated by peptide off-gel electrophoresis (OGE) into 13 frac-
tions, which were measured individually by DDA proteomics. This
approach allowed us to increase the peptide coverage from ~ 10,000
for a typical DDA measurement to a total of 26,285 unique peptide
sequences, corresponding to 2,770 unique E. coli proteins (64% of
all annotated E. coli proteins) (Fig 1B). About % of the identified
proteins have been detected with more than three peptides (Fig 1C).
The resulting spectral library is freely available through the
SWATHAtlas repository in different formats (PASS01421) and can
be used by the mass spectrometric community as a comprehensive
resource for acquiring and analyzing mass spectreometic data from
the model organism E. coli.

From peptides to proteins: the xTop algorithm
Next, we developed a novel quantitative protein inference algo-
rithm, termed “xTop”, which exploits and combines information

A CStep 1: maximally diverse E. coli proteome sampling) Il'_:b coli spectral Unique | Including shared peptides
ibrary and control proteins
( N MixcAll ) Proteins 2,770 2,887
X Peptides 26,285 26,662
E. coli Peptide
strains [\ precursors 32,784 33,282
NCM3722 Log phase Rich medium (LB) High/low temperature Transitions 196,710 199,698
MG1655 Stationary phase  \inimal media (MOPS/M9) High/low pH @
Nissle (1917) Colony glucose  xylose glucose-6P Oxidative stress
fructose  mannitol oxaloacetate  Anaerobic growth peptide
placse sl it Low irogen fractionation
melibiose  ethanol  aspartate Low phosphate (OGE)
acetate
% o = Peptides identified
@ @@@l per protein
(Step 2: LC-MS/MS measurements (Data Dependent Acquisition) ) RN 2 3 >3

U

0333

C

Step 3: Generation of E. coli spectral library

Figure 1. Spectral library generation to target the Escherichia coli proteome.

)

N=214 —/ “\—N=240

A Workflow employed to generate a comprehensive E. coli spectral library. Step 1: A wide range of E. coli cells from various strains grown under different conditions
were generated, including different time points of sampling, growth media, high and low pH, aerobic and anaerobic growth, temperatures, high and low osmotic
conditions, and different nutrition additives. Peptide fractionation by off-gel electrophoresis (OGE) was performed on a “MixAll” sample. Step 2: All samples were
measured in data-dependent acquisition (DDA) mode on a TripleTOF 5600 instrument. In total, 53 MS injections were performed. Step 3: MS2 spectra were matched
to the canonical E. coli proteome, and a consensus spectral library was generated.

B Numbers of proteins, peptides, precursors, and transitions entailed in the E. coli spectral library. Given are the statistics for the unique proteins and peptides only, as
well as for all entries, including also shared peptides, iRT peptides as well as 9 control proteins not from the organism E. coli.

C Distribution of detectable unique peptides per protein.
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from all peptides of a given protein detected across all samples to
infer the absolute protein intensity in each sample. Salient features
of the xTop algorithm are illustrated in Fig 2A. For each protein, the
intensities of its peptide precursors p across each sample s are repre-
sented as a matrix element I, This matrix is modeled as the
product of two components, the sample-dependent xTop intensity
I¥TPand the peptide-specific detection efficiency e,. These two
components are determined from the data matrix I, from their
maximum a posteriori probability (MAP) estimators (summarized in
Figure N2.2 within Appendix Note S2). Importantly, the xTop
protein intensity is obtained as a weighted average of all peptide

Matteo Mori et al

precursors intensities. Peptides whose intensities display a large
degree of mutual consistency across samples contribute the most to
the intensity I*™°P, while peptides weakly correlated with the others
contribute the least. Therefore, this method mitigates the impact of
missing or noisy peptide precursors on the inferred protein intensi-
ties. An in-depth description of the method and of its implementa-
tion is provided in Appendix Note S2.

Assessment of xTop performance
In order to validate the xTop method and benchmark it against vari-
ous other commonly used protein inference methods (TopPepl/3

A P S e e s 2 > ETop1 0 3FTop2 calibration
= ém T T T T T T T T -E i B Al
2F E ~ 1 @F K-
Inference of xTop protein @ [ opa ] = ]l et E. coli K-12 MG1655
. P . = P \4 = 3 = F same strain and conditions
intensity /*'°P and peptide QL 2 1 ok i
N L € E 1 o E as in Li et al. (2014)
detection efficiency € = F E Q9 45t
(Y wr R £ 3 E biological replicates
I, s~ IXTP x ¢ 2t v VvV cF I8¢ A1 ci F1
" ° ! SE \4 E s L ] ot ! ! !
E ] o E 3 O F
e1=1 (I, = Ix™P) er .Y. T sE RN A1 F1-1
ol C & & Y} I - Al2 ct Fi2
Z | %%, %, '>_< Samples (s) = FT. | a0 A mass spec injections,
Samples (s) Samples (s) 7 samples in total
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Figure 2. xTop protein quantification and comparison to other methods.

A xTop is a protein inference algorithm which models for each protein the intensities of peptide precursors as the product of the xTop protein intensity TP in
sample s, and a detection efficiency e, for each peptide precursor p relative to the peptide with the largest intensity (Topl). This allows to integrate consistently
the information from the whole dataset and minimizes the impact of missing peptides on the inferred protein intensity.

B We collected 3 biological samples of E. coli K-12 MG1655 (EQ353) in glucose minimal media, matching strain, and condition from Li et al (2014). Two of the three
biological replicates were injected 3 times, for a total of 7 proteomics “calibration” datasets. These samples were used for testing the reproducibility of the

proteomics measurements and the absolute quantification.

@ Peptide precursor intensities measured for the RseA protein across the seven calibration samples. Different symbols and colors indicate different unique peptide

precursors. Peptide-level intensities are reported in Datasets EV4 and EV5.
D-G
algorithms: TopPep1l, TopPep3, iBAQ, and xTop (Dataset EV6).

Protein intensities (red open diamonds) obtained from the data in panel (C) (also shown in these panels as smaller symbols) computed with four protein inference

H Variance in the log-ratio of protein intensities between technical (samples F1-1 and F1-2) or biological (samples A1-1 and F1-1) replicates using the same proteins

(N = 1,631) quantified in all samples by each method (see also Appendix Fig S2).

| For each protein, the coefficient of variation (CV) of the protein intensities was computed across the seven calibration samples using the same N = 1,939 proteins
excluding non-detected proteins. The bar graph shows the median CV for each of the four methods employed.

and iBAQ.
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Scatter of CV computed from TopPepl, TopPep3, and iBAQ against that of xTop. An excess of points is visible above the diagonal (blue line) especially for TopPep3
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and iBAQ), we grew three replicate cultures of E. coli K-12 MG1655
(sub-strain EQ353) cells in minimal medium (MOPS + glucose) in
exponential growth (Fig 2B). These “calibration samples” (Al, C1,
F1) were measured by DIA/SWATH mass spectrometry using a 64
variable SWATH window acquisition method (Collins et al, 2017).
For two out of the three calibration samples (Al and F1), we addi-
tionally performed three technical MS injection replicate measure-
ments. We analyzed the data from these 7 calibration samples in a
peptide-centric way using the E. coli spectral library described above
and the OpenSWATH software (Rost et al, 2014). We obtained
quantitative intensity values for 18,731 peptide precursors (Datasets
EV4 and EVS5). Peptide intensities were strongly correlated between
technical and biological replicates, with Pearson coefficients (r)
above 0.987 and 0.966 for technical and biological replicates,
respectively (Appendix Fig S1A). The median coefficient of variation
(CV) for technical and biological replicates was 5.5 and 10.8%,
respectively (Appendix Fig S1B and C).

To illustrate the effect of missing peptides on the inferred protein
intensities, we considered the protein RseA, an anti-sigma factor. As
shown in Fig 2C, four peptide precursors (open symbols of different
colors) are detected in the seven replicates of the calibration condi-
tion. However, not all of them are detected across all 7 samples. In
particular, the peptide precursor with the highest intensity (yellow
circles) is not detected in the three replicates of sample Al, while
peptide precursors represented by the green up-triangle and blue
down-triangles are not uniformly detected across the technical repli-
cates. These variabilities strongly impact the protein intensities
inferred by the TopPepl/3 and iBAQ algorithms as shown in
Fig 2D-F: First, the TopPepl algorithm only provides a protein
intensity in the four samples in which the top peptide has been
detected (Fig 2D, red diamonds). This protein is declared as “not
detected” in the other three samples. For both TopPep3 and iBAQ
(Fig 2E and F, respectively), the missing peptides lead to a consider-
able scatter in the inferred protein intensities (red diamonds), even
though the scatter in the intensities of each of the detected peptides
is much smaller. The xTop algorithm combines the intensities of all
the detected peptides across these samples; its inferred protein
intensities (Fig 2G, red diamonds) show little scatter across all repli-
cates compared to those generated by TopPep1/3 and iBAQ.

Proteome-wide results confirm the expectations from the exam-
ple above. First, TopPepl detects on average 1,780 proteins across
the calibration samples, about 100 less than the other algorithms
(which detect between 1,885 and 1,893 proteins). Both technical
and biological replicates are found to be strongly correlated
(r < 0.98) (Appendix Fig S2A and D). However, a clear improve-
ment of xTop over the other methods is seen when comparing the
variance of the ratio of intensities between pairs of replicates, as
summarized in Fig 2H (see also Appendix Fig S2B and E). When
using either technical and biological replicates, xTop shows the least
scatter, while TopPep3 and iBAQ show the most. The improvement
of xTop over the other algorithms is also evident when computing
the median CV of protein intensities across the seven samples, as
shown in Fig 2I, with xTop displaying a CV of 6.8%, about only
two-thirds of the CVs compared to TopPep3 and iBAQ (11 and
11.2%, respectively). The additional scatter observed for the
TopPepl/3 and iBAQ protein intensities is clearly seen in Fig 2J-L,
where we plotted the CV computed from these methods against
those computed with xTop. In all cases, an overabundance of points

© 2021 The Authors
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above the diagonal blue line can be seen, indicating proteins whose
intensities are more precisely determined by xTop (i.e., lower CV)
than the other methods. As shown in Appendix Fig S2C and F, the
increased scatter for TopPep3 seen when comparing pairs of repli-
cates was mostly due to proteins for which some peptide intensity
values were missing in one of the samples. iBAQ is similarly
affected since it makes use of the sum of all peptide intensities. This
issue is overcome by the xTop algorithm thanks to the peptide
weighing strategy described above.

Quantification of absolute protein abundance

Next, we computed absolute protein abundances as fractions of total
protein mass in the sample. For that we multiplied the protein inten-
sities for each of the four algorithms tested by the known protein
molecular weight and normalized to unity (see Appendix Note S1).
These absolute protein mass fractions were evaluated against a set
of 29 proteins whose absolute protein abundances had been
measured with one representative stable isotope-labeled synthetic
peptide per protein (AQUA peptides (Gerber et al, 2003); Dataset
EV7). The determined absolute protein abundances spanned about
3 orders of magnitude. As shown in Appendix Fig S3A-D, all four
protein inference algorithms showed good correlations to the abun-
dances determined using AQUA peptides (r > 0.92). On average, we
observed a slight 20 to 30% reduction in the median protein abun-
dances that might reflect a discrepancy in the estimation of total
protein amount in the sample. When looking at the ratios between
the inferred protein mass fractions and the AQUA peptide-derived
abundances, we saw that 50% of the data lies in a 2.5-fold range
(Fig 3A, red bars), except for iBAQ having the smallest scatter (1.5-
fold). Note that 27 of these 29 proteins had been detected with 8 or
more peptide precursors, suggesting a minimal impact of fluctua-
tions in the number of detected peptides, which cause most of the
scatter in Fig 2.

As our “calibration samples” (Al, Cl, F1) were done for the
exact same sub-strain (EQ353) of MG1655 and growth condition
(MOPS glucose medium) as that analyzed in a previous study (Li et
al, 2014) by ribosome profiling, we also compared protein abun-
dances against those inferred from Li et al (2014) where they deter-
mined the protein synthesis rates for more than 96% of all E. coli
proteins. Since protein degradation is negligible for the vast majority
of proteins in exponentially growing E. coli cells (Koch & Levy,
1955; Mandelstam, 1958; Pine, 1970; Goldberg & St John, 1976;
Erickson et al, 2017), synthesis rates are proportional to absolute
protein copy numbers. In turn, these can be converted to absolute
protein mass fractions (Appendix Note S1). To test whether the
synthesis rates obtained via ribosome profiling can be used to obtain
absolute protein mass fractions, we compared the mass fractions of
the 29 proteins to the AQUA data. We found that ribosome
profiling-derived mass fractions correlated with AQUA-measured
proteins as strongly as those derived from iBAQ, with 50% of the
genes within a 1.5-fold interval (Fig 3A, blue bar and symbols;
Appendix Fig S3E). This suggests that ribosome profiling provides
good absolute protein quantification.

As an independent test for the accuracy of absolute quan-
tification, we investigated the performance of proteomics- and ribo-
some profiling-based quantification on proteins expected to
participate in protein complexes with known stoichiometric ratios,
such as ribosomes, ATP synthase complex (atp operon), and NADH
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dehydrogenase (nuo operon). For each method, we computed
the concentration of each protein in the complex (assuming a
total protein concentration of 3 x 10° proteins per um?, see
Appendix Note S1) and divided by the stoichiometric coefficient of
each protein, obtaining for each protein an estimate of the concen-
tration of the protein complex. If proteins are indeed produced in
stoichiometric abundances, the scatter in these ratios should
predominantly reflect the error in absolute abundance determina-
tion by each method. Fig 3B-E shows the resulting ratios. We
observed that ribosome profiling yielded considerably less scatter

Matteo Mori et al

compared to the other proteomics methods, in particular for the
cases of ATP synthase proteins (Fig 3B) and the ribosomal large
subunit (Fig 3E).

Taken together, the results in Fig 3A-E suggest that ribosome
profiling provides consistently better absolute quantification than
the proteomics methods explored here. Using ribosome profiling as
genome-wide standard for evaluating the absolute protein abun-
dances from the various proteomics methods, we found that the
> 1,700 proteins measured by DIA/SWATH in the “calibration”
samples correspond to about 97% of the total protein mass (as
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Figure 3. Relative and absolute quantification.
A

Ratio of protein mass fractions computed with several protein inference algorithms (x-axis labels) and mass fractions quantified with spiked-in labeled peptides

(AQUA) for a set of 29 proteins spanning more than 2 orders of magnitude (see Appendix Fig S3, Dataset EV7). The red boxes and symbols represent four
proteomics-based protein inference algorithms (TopPep1/3, iBAQ, and xTop). The blue box and symbols correspond to ribosome profiling-derived mass fractions.
The boxes and whiskers include 50 and 90% of the data, respectively, while the central line represents the median.

B-E

Estimated concentration of protein complexes from various protein inference algorithms and ribosome profiling. Individual points are the estimated concentrations

for individual proteins in the complex, divided by the number of copies in each complex. Individual concentrations were estimated from the observed protein
number fractions assuming a total protein concentration of 3 x 10° proteins/um? (Appendix Note S1). The boxes and whiskers include 50 and 90% of the data,

respectively, while the central line represents the median.

F The bar chart summarizes the multilinear analysis described in Appendix Note S3. The total height of the bar is the variance in the log-ratio of proteomics-based
and ribosome profiling-based mass fractions. Colored components represent the fraction of variance explained by each factor (red, protein size; blue, only one
peptide precursor detected; light blue, only 2 peptide precursors detected). TopPepl1/3 and xTop protein mass fractions display a bias toward large proteins;
TopPep3 and iBAQ systematically underestimate the abundance of proteins with 1 or 2 detected peptides.

G-

Scatter plot of fold change between reference and carbon-limited conditions (growth rates 0.91/h and 0.35/h, respectively) in mass spectrometry-based

(¢S /¢, y-axis) and ribosome profiling-based protein mass fractions ("™ /", x-axis). The blue line represents equal changes in the two quantities; the

dashed lines represent a 2-fold discrepancy.
K Fraction of proteins showing a > 2-fold discrepancy in panels (G-J).
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estimated by data from ribosome profiling) and captured most
proteins with mass fractions above 107> (Appendix Fig S4A).
However, comparisons with ribosome profiling also revealed system-
atic biases in the absolute quantification for each of the protein infer-
ence methods, which were quantified by a multilinear regression of
the log-ratio of proteomics and ribosome profiling-derived protein
mass fractions, denoted as ¢; and p; respectively, as described in
Appendix Note S3. The amount of bias (explained variance) is
summarized in Fig 3F: TopPep3 and iBAQ are found to underestimate
the abundances of proteins detected with only one or two peptide
precursors (blue and light blue in Fig 3F). As the number of detected
peptide precursors is typically very low for proteins with mass frac-
tion below 10~ (Appendix Fig S4B and C), this bias leads TopPep3
and iBAQ to underestimate the abundance of low-abundant proteins
compared to ribosome profiling or xTop/TopPepl (Appendix Figs
S4D-E and S5). On the other hand, TopPepl/3 and xTop are seen to
overestimate the absolute abundances of larger proteins, leading to
systematic difference of 2- to 3-fold between large and small proteins
(red color in Fig 3F; Appendix Fig S4E-G). As a consequence, proteo-
mics algorithms tend to overestimate the covered protein concentra-
tion range in a given organism (difference between the measured
concentrations of the highest and lowest abundant protein).

Quantification of relative protein abundance

The systematic biases in absolute quantification displayed above do
not necessarily impact relative quantification. In particular, protein-
specific biases such as that toward protein size can potentially be
“fixed” by a condition-independent scaling factors (Appendix Note
S3). To assess the relative quantification capabilities of xTop,
TopPepl, TopPep3, and iBAQ, we performed additional ribosome
profiling measurements in both glucose minimal medium and
carbon-limited growth for E. coli NCM3722 strain, for which we also
have performed proteomics analysis (Dataset EV10). We then
compared the fold change in protein mass fractions estimated from
proteomics (¢S~ ™ /@™h) to that estimated from ribosome profiling
(p§~1im /ptel) " as shown in Fig 3G-J. Proteins lying on the diagonal
(blue line) had matching fold changes in proteomics and ribosome
profiling mass fractions. Red dashed lines indicate 2-fold differences
between the two. Among the four proteomics methods investigated,
xTop showed the strongest correlation with ribosome profiling
(r = 0.865). TopPepl displayed a slightly lower correlation than
xTop (r=0.833), and 10% less quantified proteins (1,616 for
TopPepl vs 1,757 for xTop). TopPep3 and iBAQ had the lowest
correlation coefficients (r = 0.778 and 0.801, respectively). The
degree of scatter is quantified in Fig 3K, which represents the frac-
tion of proteins for which the fold change in proteomics @<~ 1™ /gref
differs from that of ribosome profiling p$~" /! by more than 2-
fold (red dashed lines in Fig 3G-J). For both TopPep3 and iBAQ, the
fraction is 12 and 11%, respectively, twice of that obtained for the
other two methods (~ 6%). The additional scatter is likely caused
by the missing peptides (Fig 2E, Fig N2.1 in Appendix Note S2) and
the nonlinear dependence on protein abundance (Appendix Figs
S4D-E and S5), which both impact relative quantification.

A versatile workflow for absolute abundance quantification across
many conditions

The above analysis suggested that the xTop algorithm is superior to
TopPepl/3 and iBAQ algorithms in inferring protein intensities and
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in capturing the relative protein abundance across conditions.
However, ribosome profiling is superior to the proteomics-based
methods in quantifying absolute protein abundances in E. coli, i.e.,
an organism for which protein degredation can be neglected under
exponential growth. Given the costs and efforts of performing ribo-
some profiling across many conditions, we developed a workflow
combining the accuracy of ribosome profiling with the versatility of
mass spectrometry. As illustrated in Appendix Fig S6, we used DIA/
SWATH-based proteomics to measure all our E. coli samples and
xTop to obtain protein abundances relative to the 7 calibration
samples, for which ribosome profiling data are available (Li et al,
2014). We then used this ribosome profiling data to rescale the rela-
tive proteomic data to absolute protein mass fractions. Note that the
use of a calibration sample allows different proteomics datasets to
be combined in a consistent way, as long as each dataset includes
the same “calibration” condition. In this workflow, there might be
additional sources of error, for example, for membrane-associated
or periplasmic proteins. These proteins can be problematic since
they translocated across membranes and protein extraction efficien-
cies might not be 100% and vary across conditions. However, a
comparison of the absolute protein mass fractions determined by
ribosome profiling and xTop showed that the ratio was centered
around 1 for different classes of membrane and periplasmic proteins
(Appendix Fig S7). This indicates that at least in the conditions
tested extraction efficiencies of membrane-associated proteins are
not an issue.

Our generated data, including the comprehensive E. coli spectral
library and the absolute protein mass fractions obtained through
xTop, provide accurate quantitative estimates for thousands of indi-
vidual proteins across > 60 growth conditions, a task which is not
practical to achieve by ribosome profiling. For other conditions and
organisms (e.g., slow-growing bacteria, or eukaryotic cells), the
impact of protein degradation and protein translocation might not
allow the use of ribosome profiling to calibrate relative protein
abundances. In these cases, our versatile workflow can be adapted
to use different quantities for the calibration of absolute protein
abundances (see Appendix Note S3, section “Bias removal via cali-
bration of protein abundances”).

Biological analysis of E. coli proteomes

The workflow outlined above allowed us to analyze E. coli
proteomes over 66 different samples representing an array of dif-
ferent treatments, strains, and growth conditions. The resulting
absolute protein abundances are expressed in “protein mass frac-
tions”, i.e., mass of a given protein over the total mass of all
detected proteins, which can readily be converted to cellular protein
concentration (Appendix Note S1). Assuming typical proteins to be
300-residues in length, 0.1% of proteome mass is equivalent to
about 2,400 proteins per um® of cellular volume in E. coli. Note that
the frequently used absolute unit “protein copies/cell” is avoided
here, as cell size is highly variable across growth conditions (Basan
et al, 2015b; Si et al, 2017). Instead, protein mass fractions allow
direct conversion to protein concentrations, which can then be
compared across conditions (Milo, 2013).

Altogether, we obtained absolute mass fractions for a total of
2,335 distinct proteins across all samples, covering the vast majority
of the expressed E. coli proteome. The 66 samples analyzed can be
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divided into three groups. First, seven samples correspond to the
“calibration” samples discussed above. Second, 27 samples define
three “growth limitation” series, in which cells were growing expo-
nentially in glucose minimal medium, with various means of titra-
tion to implement gradual growth limitation in catabolism,
anabolism, and protein synthesis as done previously (Hui et al,
2015). This dataset is used to define “protein sectors”, which
provide a coarse-grained view of changes in the E. coli proteome.
Third, 30 samples are analyzed to reveal the proteome response to
various stresses, during transition from exponential growth to
stationary phase, and away from planktonic state, e.g., for growing
colonies in biofilm-forming conditions. All sample descriptions are
listed in Datasets EV2 and EV3, while the absolute protein mass
fractions are reported in Datasets EV8 and EV9.

Adaptation of coarse-grained protein sectors

Following Hui et al (2015), we applied a variety of steady-state
growth limitations to E. coli K-12 NCM3722 and its derivatives. First,
culturing cells with titratable glucose uptake (strains NQ1243 (Basan
et al, 2015a) and NQ1390; see Dataset EV1 and Extended Experimen-
tal Methods for strain informations) in glucose minimal medium, we
generated a series of 15 samples that grew at a range of growth rates
(0.33-0.91/h); they are referred to as the “C-limitation” series.
Second, culturing cells with titratable glutamate synthesis (NQ393,
Hui et al (2015)) in the same medium (with ammonium as the sole
N-source), we generated a series of seven samples that grew from
0.22-0.84/h due primarily to the effect of glutamate on amino acid
synthesis through trans-amination (Reitzer, 2005). They are referred
to as the “A-limitation” series. Finally, by adding various sub-lethal
doses of chloramphenicol into the growth medium (again, glucose
minimal medium), we generated another seven samples that grew
from 0.36-0.98/h due to limitation of protein synthesis by the ribo-
somes; they are referred to as the “R-limitation” series.

Changes in protein abundances in response to these applied
growth limitations were characterized previously by Hui et al (2015)
using a simple binary classification, which partitions the proteome
into a number of “sectors”. For instance, proteins upregulated in
C-limitation and downregulated in A- and R-limitation define the
“C-sector”. The resulting 2> = 8 possible protein sectors are summa-
rized in Fig 4A, which also shows the number of genes belonging to
each sector. Our data allowed us to associate 1,821 of the 2,335
proteins detected to the eight protein sectors, using only proteins
with at least three data points in each growth limitation series
(Dataset EV11). A high degree of consistency was seen in the classi-
fication of the proteins classified here and in Hui et al (2015)
(Appendix Fig S8). Most discrepancies were due to proteins weakly
dependent on growth rate in at least one of the three growth limita-
tions, which were therefore borderline between pairs of sectors
(Appendix Fig S8H). The total number of proteins classified here
was almost double from that reported in Hui et al (2015), although
the latter represent close to 90% of the total protein mass detected
in this work, indicating that most of the newly classified proteins
were low in abundance. The total abundance of proteins belonging
to each sector, i.e., the sector mass fraction, is given in Fig 4B for
the reference condition (glucose minimal medium).

At a quantitative level, the C-, A-, S-sectors, which are upregu-
lated in response to C- and/or A-limitation, are at about 10% of
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proteome mass each in reference condition (glucose minimal
medium) and reach either half or twice the proteome fraction at the
slowest growth rate examined for each limitation (Fig 4C-E). The U-
sector, which is downregulated in all three limitations, ranges
between 20% of the proteome in reference condition to less than
10% at slow growth (Fig 4F). The R-sector, which is the largest
sector in reference condition at 30% of the proteome, is upregulated
under R-limitation reaching about 45% of the proteome (Fig 4G).
These overall patterns of these sector abundances resemble well
those observed in Hui et al (2015).

Following Hui et al (2015), we applied a GO-term enrichment
analysis to proteins in each sector to bring forth common functional
roles (Appendix Note S4). The analysis in Hui et al (2015) focused
on only five of the eight proteins sectors, as these displayed the
largest variation in expression across the different growth condi-
tions: C-sector (C'A'R', predominantly associated with carbon cata-
bolism and motility), A-sector (C'A'R', glycolysis and amino acid
biosynthesis), R-sector (C*A'R", ribosomal, and ribosome-associated
proteins), S-sector (C'A'R', catabolism and stress response), and
U-sector (C*A'RY, biosynthesis of amino acids and nucleotides). Our
findings were in excellent agreement with the previous analysis,
with similar sector membership (Appendix Fig S8) and functional
roles for each of these five sectors (Dataset EV12).

Proteins not belonging to any of the five sectors above (171
out of 1,034 in Hui et al (2015)) had been previously lumped into
a single group (the “O-sector”). In our study, a much larger
number of proteins (686 out of 1,821 classified), including most
of the newly detected proteins, belonged to this group. While
these proteins comprised a total of 20-30% of the proteome mass
(Fig 4H, 12-20% for the O-sector proteins in Hui et al (2015)),
most of them had low individual abundances, with 95% of them
below 0.01% of the total proteome mass (Appendix Fig S9). This
group of proteins could be further categorized according to their
responses to the three growth limitations into the C’-sector
(C'A'R", 103 genes), A’-sector (C'A'R', 211 genes), and S’-sector
(C'A'R', 372 genes, see Fig4A and B). Each of these sectors
included proteins which were upregulated under R-limitation and
additionally C- and/or A-limitation. Their abundances across
growth conditions, shown in Fig 41-K, were dominated by the S’-
sector, which rised from 10% of the proteome in reference condi-
tion to as much as 20% at slow growth. More than half of this
increase was accounted for by changes in two abundant proteins,
Lpp and OmpC (Dataset EV9).

The GO-term enrichment analysis (Fig 4L; Appendix Note S4;
Dataset EV12) found several biological activities to be shared among
these three sectors and some of the other five sectors described
above. In particular, the C’-sector included many amino acid,
peptide, and protein transporters, which were upregulated in C-
limitation and downregulated in A-limitation. This, together with
their generally weak response to R-limitation, made the C’-sector
proteins very similar to the C-sector in both their response and func-
tion (higher-order functional groupings are indicated by the dashed
lines in Fig 4A). Both the A’ and the S’ sectors were enriched in
proteins involved in “cell division” and “cell cycle”, as well as in a
variety of terms associated with cell membrane and cell wall (Fig 4
L). Additionally, the A’-sector was enriched in “tRNA processing”,
“rRNA processing” terms, due to proteins involved in ribosome
biogenesis (rlm, rsm operons, whose proteins where hardly detected

© 2021 The Authors
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Figure 4. Proteome sectors in carbon, nitrogen, and translational limitation.

growth rate (1/h)

growth rate (1/h)

A Starting from a “reference” condition (glucose minimal media, growth rate approx. 1/h), we modulate E. coli growth by applying three different sources of stress
(“limitations”): carbon (C-) limitation, obtained by titrating glucose transport; anabolic (A-) limitation, obtained by titrating nitrogen assimilation; ribosomal (R-)
limitation, obtained by introducing translation-inhibiting antibiotics (chloramphenicol). The simplest way to capture the change in the proteome composition is to
introduce a binary classification: A protein can be either up- or downregulated in each of the three limitations. For example, the C-sector includes all proteins
whose abundance increases in C-limitation and decrease in A- and R-limitation, and is hence indicated as CtA|R|. In the diagram, we show the eight possible
sectors, with the number of genes associated with each sector. Dashed lines indicate higher-order groupings between sectors with partially overlapping GO-terms.

B The decomposition of the proteome into protein sectors allows to appreciate the large-scale changes of protein expression in the three growth limitations. The pie
charts indicate the composition of the proteome by mass in reference condition and in the three extreme limitations (growth rate approx. 0.3/h).

Protein mass fractions associated with each of the eight sectors across growth rates in the three growth limitation series. Panel (H) represents the mass fraction of

the O-sector, given by the sum of C-, A, and S’-sector protein abundances (panels (I) to (K)).
L GO-term enrichment analysis of the C-, A'-, and S’-sectors (see Appendix Note S4). The numbers at the side of the bars represent the number of genes in the sector
associated with each GO-term. Bold terms are mostly unique to each one of the three sectors, while the others are shared between two of the three sectors.

in Hui et al (2015)), and “response to antibiotic”, causing it to also
functionally overlap with the R-sector.

The comprehensive coverage in our dataset allowed us to investi-
gate the expression profile of proteins belonging to each of the 8
sectors. Surprisingly, we found that different sectors have markedly
different protein abundance distributions (Appendix Fig S9A-I). The
composition of both the S- and S’-sectors was strongly skewed
toward low-abundant proteins, with 62% of genes having a mass
fraction ¢; < 10™ in reference condition, while most genes

© 2021 The Authors

belonging to the A- and U-sectors were relatively abundant (only
32% of genes below 10™) (Appendix Fig $9J). Overall, low and high
abundant proteins seemed to respond to nutrient starvation in quali-
tatively different ways: About half of the low-abundant proteins
(42% of genes with mass fractions ¢; < 107 in reference condition)
were upregulated under both nutrient limitations (either carbon or
nitrogen), while 52% of highly expressed genes (¢; > 107%), includ-
ing the majority of biosynthetic enzymes, tended to be downregulated
in both nutrient limitations (Appendix Fig S9K).
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In each of the C’-, A’-, and S’-sectors, one abundant protein stood
out against the above pattern. This were the outer membrane
porins: OmpF (C’-sector), OmpA (A’-sector), and OmpC (S’-sector),
which together with NmpC (C-sector) responded to the three growth
limitations with very different logic (Fig SA-C). The variety of
expression patterns exhibited by the different porins is shown in
Fig 5A-C. In Fig 5D, we compared to their abundances in high
osmolarity medium, which is known to induce big shifts in porin
expression (Alphen & Lugtenberg, 1977). OmpA is the basal porin,
expressed at high levels in all conditions except for C-limitation.
OmpF is expressed in all conditions except for high osmolarity.
Interestingly, OmpC and NmpC seem to complement each other,
with NmpC specializing in C-limitation and OmpC specializing in
high osmolarity. The high expression of NmpC in poor carbon
sources was overlooked in previous studies due to the loss of nmpC

Matteo Mori et al

in certain E. coli K-12 strains (Hindahl et al, 1984), as will be
discussed below.

The total mass fraction of these porins is shown in Fig SE, with
an increase under C- and A-limitation and a decrease under R-
limitation. This change is echoed in the mass fraction of periplasmic
proteins, although with twice as large increase under C-limitation
(Fig 5F). Although the increasing trend of periplasmic protein
expression in carbon limitation was already noted in Schmidt et al
(2016), they reported a much larger fraction of periplasmic proteins,
approaching 1/3 of total cytoplasmic proteins at slow growth, and
giving a rather different biological picture.

The increase of porin protein abundance under C-limitation coin-
cides with the increase of cell surface area due to reduced cell size
observed in poor nutrient conditions (Basan et al, 2015b; Si et al,
2017). To see whether the data in Fig SE can be explained by
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Figure 5. Outer membrane proteins.

growth rate (1/h)

growth rate (1/h)

A-C Absolute protein mass fractions (in % of total protein mass) of the four most abundant outer membrane porins in E. coli NCM3722 (NpmC, OmpA, OmpC, and
OmpF), as a function of growth rate in three growth limitation series; symbols are shown in the adjacent panel.

D The table summarizes the mass fractions of the four porins in reference condition (glucose minimal medium), extreme C-, A-, and R-lim (growth rate ~ 0.3/h), and
high osmolarity (sample Lib-02, growth rate 0.24/h). Entries with mass fractions larger than 1% are highlighted in red.

E Total protein mass fractions of the four porins against growth rate, in the three growth limitation series.

F Total protein mass fraction of proteins classified as “periplasmic” according to Ecocyc classification (Karp et al, 2018) against growth rate, in the three growth

limitations.

G Porin surface density in C-limitation (red) and R-limitation. To obtain the porin surface density, we first obtained the number of porins per cell volume (see
Appendix Note S1) and divided by the (condition-dependent) surface to volume ratio, using the values reported by Si et al (2017) for C- and R-limitation.
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changes in surface-volume ratio, we computed the total density of
porins on the outer membrane using the cell size from Basan et al
(2015b) for C- and R-limitation and assuming a constant aspect ratio
(Si et al, 2017) (Fig 5G). In reference condition, we obtained a
density of about 1.2 x 10* porins/um?, corresponding an occupation
of 5% of the cell surface area given a diameter of 2.6 nm for each
porin (based on the structure of the OmpA monomer (Pautsch &
Schulz, 1998)). The density increased by 15% under carbon limita-
tion and decreased by 20% under chloramphenicol treatment. These
results demonstrate that the total porin density is not conserved.
Rather, the porin density on the surface is low enough that it can be
adjusted in accordance to physiological demand.

Proteome response under diverse growth conditions

In addition to the global, sector-level analysis performed so far, the
accuracy of absolute protein mass fractions attained by our work-
flow allowed us to make quantitative statements on the absolute
abundances of individual proteins across conditions. In this section,
we turned our attention to such an effort. We divided the analysis
into four categories. First, we compared the differences in proteome
response between growth on different carbon sources and on
glucose with titratable uptake. Second, we analyzed proteome
response under various nutrient-limiting conditions beyond carbon
and nitrogen, including exponential growth under phosphate limita-
tion and anaerobic condition, as well as transition to stationary
phase, colony growth, and biofilm-inducing conditions. Third, we
examined response to various stress conditions under nutrient
replete conditions, e.g., under high temperature, high osmolarity,
and oxidative stress. While the above are all done with NCM3722
cells and their close derivatives, we finally compared the proteome
of these with a number of other genotypes, which gave us the
opportunity to compare expression of motility and biofilm-
associated genes, which are often subject to mutations in laboratory
strains of E. coli.

Different carbon sources

In this study, we measured the proteome of cells grown in a variety
of carbon substrates (including mannitol, melibiose, arabinose,
xylose, gluconate) that are not commonly used for E. coli proteomic
studies. As these substrates provided a range of growth rates, this
dataset presents a unique opportunity to examine the effect of
“carbon limitation” imposed by these individual substrates,
compared to “C-limitation” described in previous sections imposed
by titrating the glucose transporter PtsG for cells grown on glucose.
This is done in Fig 6A by showing the increase in the abundance of
proteins for cells grown in each of these substrates, versus glucose-
limited growth dialed to obtain similar growth rate. Shown in red
are proteins that increased by at least 4-fold in relative abundance
and by at least 0.05% of the proteome in absolute abundance (~ 500
copies out of a million assuming proteins are of similar length). The
first thing to notice is how few such “red proteins” there are out of
~ 2,000 total proteins detected. Among these red proteins, about
half are specific to the catabolism of the particular substrate being
used, e.g., MtIAD for mannitol and MelA for melibiose. It is striking
that none of the specific catabolic proteins increase in expression by
more than a few percent of the proteome. The highest expressed
proteins, MelA (a-galactosidase) and LacZ (p-galactosidase), are at 4
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and 1.3% of the proteome, respectively, when grown on melibiose,
an a-galactoside. The others increased by not more than 1% of
proteome. Additional catabolic proteins associated specifically with
the catabolism of the particular substrates are indicated in blue.
Their abundances are mostly lower than the red proteins; the few
exceptions with increase > 0.05%-proteome have the gene name
indicated in blue, including UhpT (G6P), AraAB (arabinose), XylB
(xylose), and GIpDTQ (glycerol). (They are not shown in red
because the relative abundance changed less than 4-fold, indicating
appreciable expression also under glucose-limiting growth.)

The sum of the abundances of all the catabolic proteins specific
to each respective carbon sources, i.e., all the proteins indicated in
blue, are plotted as filled diamonds in Fig 6B and comprise only
1-2% of the total proteome by mass. [The one exception is for
growth on melibiose, green diamond, with MelA alone being 4% of
the proteome. However, the abundance of MelA was assigned with-
out the benefit of calibration by ribosome profiling (as these
proteins were not detected in the calibration sample grown in
glucose medium) and may therefore be less accurate.]. The small
increase in these carbon source-specific catabolic proteins is to be
contrasted with the substantial increase of the total abundance of
“C-sector proteins”, as defined from the three growth limitation
series described above, plotted as filled circles for cells grown on
the specific carbon sources and as red open circles for cells grown
on glucose with titrated. These two datasets are remarkably similar,
indicating that the bulk of the C-sector proteins respond primarily to
the rate of carbon-limited growth, not to the specific carbon
substrates. Quantitatively, those responding to specific carbon
sources, filled diamonds, represent only 5-10% of C-sector proteins
by mass. The similarity between glucose limitation and the variety
of other carbon sources actually extends beyond C-sector proteins,
as the abundances of the other protein sectors are also similar; see
Appendix Fig S11 for an overview of the abundances of protein
sectors across all conditions studied in this work. Together, these
results establish the concept of “carbon-limited growth” and vali-
date the use of the titratable glucose uptake as a method to probe
the proteome response to carbon-limited growth.

Among the C-sector proteins, the abundances of TCA/gluconeo-
genesis (GNG) enzymes and flagellar components each comprise
about 25% of the total sector abundance (orange and blue symbols,
Fig 6C). While for most of these carbon substrates studied, the
abundance of these TCA/GNG and flagellar proteins are similar to
those observed for the titratable glucose uptake strain (Fig 6D and
E; compare red and gray symbols), there are several exceptions
worth noting. Cells grown on acetate (blue circles) exhibit a signifi-
cant increase (+ 3% proteome) in the abundance of C-sector TCA/
GNG enzymes; this is expected as these enzymes play a key role in
the assimilation of acetate. Interestingly, this is accompanied by a
decrease in the abundance of flagellar proteins, also about 3%. We
also note that for growth on melibiose, flagella proteins are not
expressed (Fig 6E, green circle), this is due to the use of strain
EQ59, a derivative of NCM3722 abolished of flagella expression as
will be discussed below. (For all other cases of growth on alterna-
tive carbon substrates, NCM3722 was used). The lack of flagella
expression leads to ~ 3.5% reduction in the total abundance of C-
sector proteins (Fig 6B, green circle). Recalling that these C-sector
proteins are defined from titratable glucose uptake and do not
include the melibiose-specific enzymes, particularly MelA and LacZ,
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Figure 6. Carbon-limited growth.

A

growth rate (1/h)

growth rate (1/h) growth rate (1/h)

Comparison between the proteome of Escherichia coli cells grown in various carbon sources and that of cells grown in glucose. For each carbon source (x-axis; the

growth rate is specified in the label), we show the increase in protein mass fractions in that medium from the abundances observed for cells growing at a similar
rate under “C-limitation”, i.e, on glucose with titratable expression of the glucose transporter PtsG in NCM3722-derived strains NQ1243 and NQ1390; see Dataset
EV1. For growth on carbon sources different from glucose, wild-type NCM3722 cells were used in all cases, except in the case of melibiose where the non-motile
NCM3722-derived strain EQ59 was used instead. Red circles indicate proteins with a fold increase larger than 4; blue dots represent proteins associated with
catabolism of the carbon sources in which cells are grown in (e.g., glp genes for growth on glycerol); gene names are displayed for proteins above a mass fraction
of 0.5. Proteins that were systematically different across all samples were excluded from the comparison; this was done by computing the differences of the log-
transformed mass fractions across all pairs of samples, and excluding proteins for which the absolute value of the mean difference is larger than its standard

deviation.

Circles indicate the total mass fraction of proteins assigned to the C-sector for cells growing under glucose uptake titration (C-limitation, open red) and for cells

grown on the carbon sources described in panel (A) (filled gray, except for growth on acetate, blue, and melibiose, green). Filled diamonds indicate the total mass
fraction of proteins associated with the catabolism of specific carbon sources used (those indicated by the blue dots in panel (A)). They amount to only 5-10% of C-
sector proteins, with the exception of those associated with the catabolism of melibiose, with a single protein MelA comprising of 4% of total protein mass, or ~ 1/

3 of C-sector proteins.

Open symbols indicate the fractional abundance within the C-sector of four protein groups (TCA cycle and gluconeogenesis (TCA/GNG); motility; the outer

membrane porin NmpC; alternative carbon or amino acid uptake and catabolic proteins) for cells growing under glucose uptake titration. The total protein mass
fraction of these four groups adds up to between 64 and 75% of the whole C-sector protein mass.

D-F Absolute protein mass fraction of TCA/GNG, motility, or alternate carbon uptake proteins that belong to the C-sector. Symbols are the same as in panel (B)). Cells
growing on acetate (blue) display higher TCA/GNG and lower motility expression levels compared to glucose-limited growth at the same growth rate. Expression of
motility proteins is instead greatly reduced for cell growing on melibiose (green), due to the fact that the non-motile strain EQ59 was used in this case.

adding back these two enzymes again makes the total comparable
to that of the glucose titration strain. These data suggest a possible
compensatory regulation among C-sector proteins under carbon-
limited growth.

The remaining C-sector proteins are comprised largely of the
outer membrane porin NmpC and a number of catabolic proteins
not related to the provided carbon substrates (open red circles and
filled purple diamonds in Fig 6C, respectively). As discussed above,
NmpC is the major outer membrane porin in C-limitation along with
OmpF. Catabolic proteins detected at appreciable levels include
those involved in the uptake of amino acids (cstA, dppF, livFGM,
gltJK, putP, tcyJ, yifK), galactose (galEKT, mglABC), ribose
(rbsABCDK), and acetate (acs). The abundance of these proteins
increase sharply under both glucose uptake titration and the alterna-
tive carbon substrates (Fig 6F), suggesting a general foraging strat-
egy in poor carbon conditions. Together, the data in Fig 6 provide a
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detailed quantitative picture of the proteome response to carbon
limitation, with most resources devoted to general foraging (includ-
ing flagella, TCA/GNG, and the assortment of catabolic proteins),
and with only a small fraction associated with the uptake of the
specific carbon substrate provided.

Other nutrient conditions

In the first part of the results, we applied titratable limitations to
probe the response to perturbations of major proteomics sectors
(Figs 4 and 5). Here, we explored the proteome response to other
nutrient conditions, including anaerobic growth, phosphate limita-
tion, and slowdown into stationary phase. To display the finer dif-
ferences due to these perturbations, we used scatter plots showing
the absolute abundances of all proteins detected in a pair of growth
conditions, highlighting a number of major biological functions with
distinct colors and symbols. Examples are shown in Appendix Fig

© 2021 The Authors
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S10 for each of the three limitation series described in the previous
section, compared to the reference condition (wild type in glucose
minimal medium). Significant movement away from the diagonal
was seen for ribosomal proteins (green points), TCA enzymes (open
orange squares), glycolytic enzymes (open blue squares), fermenta-
tion enzymes (open purple diamonds), motility proteins (cyan trian-
gles), and a subset of stationary, RpoS-driven, proteins (yellow
triangles). The overall change in proteome composition in all three
cases was similar, close to 25% (Appendix Fig S11).

MOPS versus M9

For the comparison in Fig 6, samples with specific carbon sources
were mostly grown in MOPS-based media, while the titratable
glucose uptake strain was grown in M9 glucose medium. Here, we
compare NCM3722 grown in MOPS- and M9-based medium, both
with glucose as the sole carbon source. The resulting scatter plots
are shown in Fig 7A. The vast majority of genes were very similar
in expression across conditions, as also clear when looking at
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Figure 7. Comparison of proteome profiles across growth conditions.
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aggregate measures of proteome similarity (Appendix Fig S11).
However, there were several notable differences between the two
growth media, which we highlighted by the red symbols. First, the
thiCEFSGH operon, encoding enzymes of the thiamine biosynthesis
pathway, was strongly repressed in M9 (undetected). This reflects
the supplementation of thiamine in the M9 medium used. Second,
the ent genes, encoding biosynthesis of enterobactin employed in
iron uptake, were significantly upregulated in M9 (2 to 4-fold),
while proteins for iron storage (encoded by ftnA, bfr) as well as the
iron-based superoxide dismutase (encoded by sodB) were signifi-
cantly upregulated in MOPS (> 2.5-fold). The iron content in M9
and MOPS is actually not so different (10 pM of FeClz in M9, 60 pM
of FeSO, in MOPS). The opposite proteome response observed here
is likely due to the addition of 4 mM tricine in MOPS, which solubi-
lizes iron (Neidhardt et al, 1974). Consistent with this, small precipi-
tates were observed when adding FeCl; to M9. There was also a
small but noticeable increase (~ 2-fold) across the isc genes, encod-
ing enzymes for Fe-S cluster assembly, for cells grown in M9.
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Scatter plots of absolute protein mass fractions between pairs of growth conditions and/or strains. Lateral boxes include proteins detected in only one of the two
samples. Growth rates are reported on the axis labels when available. Colored symbols indicate groups of proteins as described in the legend (see Appendix Fig S10 for

more details). Some notable proteins are highlighted in red.
A
B

Comparison of protein mass fractions for cells grown in different base media: M9+glucose (y-axis) versus MOPS+glucose (x-axis).
Protein mass fractions for Escherichia coli strain NQ1431 (phnE*) growing in glucose and a poor phosphate source (2-aminoethylphosphonate) versus wild-type

NCM3722 cells in reference condition (glucose minimal medium with phosphate as P-source).
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Proteome of anaerobically growing cells on glucose minimal medium versus that of cells in reference condition.
Comparison of proteome of cells in rich (LB) medium in different growth phases: mid-exponential (ODgoo = 0.6, X-axis) and stationary phase (ODgoo = 3.34, y-axis).
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Concomitantly, the abundance of TCA enzymes (open orange
squares) was reduced by about 20% in M9 media. Together, these
data depict a quantitative picture of how M9-grown cells cope with
iron limitation by increasing Fe-S assembly and reducing their major
“consumers”, the TCA enzymes. Finally, we noted in M9 medium a
strong upregulation of the cusABCF genes, encoding the silver/cop-
per detoxification system, as well as of cusRS encoding for the regu-
lators of the cusABCF operon. The cause of this increase is not
known and may be related to the iron shortage. These data suggest
that MOPS is a superior medium for vegetative growth, even though
the differences in overall gene expression and growth rate between
MOPS and M9 appear to be small.

Phosphate-limited growth

We next turned to other modes of nutrient limitation. The steady-
state response of the proteome to phosphate limitation had been
characterized using a medium with phosphonate as the sole P-
source. Due to a nonsense mutation of phnE (encoding a subunit of
the phosphonate ABC transporter) in E. coli K-12, we created strain
NQ1431 which is isogenic to NCM3722 except for having a phnE+
allele. NQ1431 grew exponentially at a rate of 0.59/h in MOPS
glucose medium with phosphonate as the sole P-source. We
compared the proteome of this P-limited culture to that of a C-
limited culture that grew at a similar rate (strain NQ1243 in M9
glucose medium). As seen in Fig 7B, the P-limited culture showed a
strongly increased abundance of the phosphate uptake system,
including several pho, ugp, and pst genes encoding enzymes
involved in the transport and scavenging of alternative sources of
phosphorous (red circles in Fig 7B). The abundances of some of the
general stress proteins (yellow upward triangles) also increased,
while motility proteins (blue downward triangles) were reduced 3-
fold. Interestingly, ribosomal proteins, the major consumer of cellu-
lar phosphate, remained nearly unchanged (green circles), as did
the RNA polymerase components (not shown). The nucleotide
biosynthesis pathways increased moderately, 1.5-fold on average, in
particular the enzymes GMP synthetase (guaA, 2.4-fold increase)
and IMP dehydrogenase (guaB, 2.9-fold increase). A notable excep-
tion to this trend was the 2.7-fold decrease in the abundance of the
nucleoside diphosphate kinase (ndk), which was only partially
compensated by a moderate (1.5-fold) increase in the expression of
adenylate kinase (adk).

Anaerobic growth

We next compared the proteome of NCM3722 cells growing expo-
nentially in aerobic and anaerobic conditions in glucose minimal
medium (Fig 7C). Anaerobic growth is expected to induce signifi-
cant proteome rearrangements due to the much lower efficiency in
energy generation. Indeed, we observed a total variation of about
25% of the proteome (Appendix Fig S11). However, the growth
rates, 0.68/h and 0.91/h, respectively, were not very different. Ribo-
some content (green circles) also did not change much (~ 1.3 fold,
comparable to the change in growth rate). As expected, the abun-
dances of most TCA proteins (orange squares) were strongly
reduced (~ 5-fold) in anaerobic conditions, by a total of 3% of the
proteome. Glycolytic proteins (blue squares) and proteins associated
with fermentation (magenta diamonds) increased in abundance by
2-fold (4% of proteome) and ~ 5-fold (5% of the proteome), respec-
tively. Most notably, AdhE, PfIB, Eno, and GapA took between 2
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and 3% of the proteome mass each in anaerobic growth. HypB,
involved in the maturation of the hydrogenases, was detected in
anaerobic but not aerobic condition. The abundance of motility
proteins (blue downward triangles) was reduced by about 2-fold
(~ 1% of proteome). MetE, catalyzing the last step of the methion-
ine biosynthesis pathway and being the most abundant proteins
(6% of proteome) for growth in minimal medium, was also strongly
downregulated (2.5% of proteome in anaerobic growth). However,
this was not a result of anaerobic growth per se, as the medium
used for anaerobic growth included vitamin B;,, which enables
E. coli to replace MetE by the much more efficient MetH.

Transition to stationary phase

The transition from exponential growth to stationary phase also had
profound impact on the proteome. We grew E. coli NCM3722 cells
in rich (LB) media and collected samples in mid-log phase (ODggo =
0.6) and in stationary phase (ODggp = 3.34). The corresponding
proteomes are plotted against each other in Fig 7D. The abundances
of ribosomal proteins (green) and motility proteins (downward blue
triangles) in stationary phase were reduced 2- to 3-fold compared to
log phase. At the same time, the abundances of stress proteins (yel-
low triangles) and some TCA proteins (orange squares) were
strongly elevated (10- to 30-fold), as well as proteins associated with
fermentation (magenta diamonds, 2.5-fold). Overall, this change
involved a remodeling of > 30% of the proteome (Appendix Fig
S11), which likely took place during the time these cells gradually
slowed down in growth as various nutrient elements in the LB
medium got exhausted. Such extensive reallocation of the proteome
was also clearly visible in the abundance of the proteins sectors
(Appendix Fig S12). Fast growing cells (early log, filled triangle in
Appendix Fig S12) were characterized by a very large R-sector
(~ 40% of total protein mass), due to the large expression of riboso-
mal proteins and associated factors, and a very small S-sector. Vice
versa, cells entering stationary phase displayed a greatly reduced
R-sector (~20% of the proteome) compared to early log cells.
Instead, a considerable increase in S-sector proteins (¢t ~ 25% of the
proteome, to be compared to ~ 10% in fast growth) reflects the
abundance of stress and catabolic proteins in this condition. Biosyn-
thetic enzymes, belonging predominantly to the A- and U-sectors
and not needed during growth on rich media, were expressed at low
levels across all growth phases (~ 15% for the sum of the sectors).

Different stress sources

After describing the response of the E. coli proteome to several
nutrient conditions, we investigated its response to several sources
of stress, including high temperature, hyperosmolarity, and oxida-
tive stress.

High temperature

First, we compared the proteome of NCM3722 cells grown exponen-
tially in MOPS minimal medium with glucose at 42 and 37°C.
Gro